New Basic Interpreter

© Jon T. Qualey, 2005

Introduction –

 The New Basic Interpreter is a BASIC language interpreter for Windows offering full immediate mode functionality as well as the ability to edit, store and run BASIC programs. The core BASIC language is supported with minor differences from traditional BASIC. Access to the Windows system is available through language extensions (via functions). File systems, registry and environment are just a few Windows systems accessible from New Basic.

 This manual assumes that the reader is familiar with the BASIC programming language. The capabilities of New Basic are covered in depth in this manual rather than the BASIC language itself.

Differences between traditional BASIC and New Basic –

· BASIC traditionally supports automatic variable declaration. This is when a variable name appears in a program and this variable name has not been encountered before in the program, the variable is automatically declared. New Basic requires that the variable name be declared before it is used in the program. This is done via the DEF commands (see language reference). The reason for this is that many BASIC program bugs can be traced to a new variable being unintentionally declared because of a typographical error in the program code. New Basic eliminates this problem altogether by not automatically declaring variables.

· New Basic distinguishes integer numbers from real numbers where traditional basic allows intermixing of integers and real numbers (or floating point numbers).

· New Basic does not require that string variables be suffixed by the ‘$’ character. However, ‘$’ may be used in variable names if desired.

· New Basic is not case sensitive.

· New basic does not allow IF-THEN statements embedded within other IF-THEN statements.

· INPUT is a set of functions rather than a command as in traditional basic. There is a separate input function for each data type.

· READ is a set of functions rather than a command as in traditional basic. There is a separate read function for each data type.

· Maximum line number is 99999.

· Real number literals must contain a decimal point.

Data Types and Variables –

 Three data types are supported in New Basic. These are integers, real numbers and strings. Integers and real numbers cannot be intermixed in arithmetic or value assignment.

Data type specification –

· Integer
- 32 bit signed integer.

· Real
- Double precision, signed floating point number.

· String
- 255 characters maximum.

Variables –

· Variable names may be up to 16 characters long.

· Arrays are handled like variables.

· Variable names must be unique, even between variable names and array names.

Complex expressions –

 Complex expressions may be arithmetic expressions composed of numeric literals, variables, arrays, operators and functions. Parenthesis may be used to override standard operator precedence.

 Expressions may also be composed of strings. However, strings expressions can only use the addition (‘+’) operator for concatenation.

Operators –

The following operators are supported –

+
- Addition.

-
- Subtraction.

*
- Multiplication.

/
- Division.

=
- Assignment. Comparison (equality) inside an IF-THEN statement.

>
- Greater than. IF-THEN statements only.

<
- Less than. IF-THEN statements only.

>=
- Greater than or equal. IF-THEN statements only.

<=
- Less than or equal. IF-THEN statements only.

<>
- Not equal. IF-THEN statements only.

()
- Order of precedence. Array subscripts and function calls.

Language Reference

General Commands, Functions and Keywords –

AND

· Keyword

 AND is a logical operator that can only be used within IF-THEN statements. Two or more equality (or comparison) expressions can be logically “ANDed” within and IF-THEN statement.

Example –

IF x = 6 AND x + 1 = y AND z = 10 THEN GOTO 100

BEEP

· Command

 BEEP invokes the Windows default system sound, which is defined in the Windows control panel under sounds. If the default system sound is turned off, BEEP will not produce sound. BEEP takes no arguments.

Example –

10 BEEP

CLS

· Command

 CLS clears the main text window of the interpreter. CLS takes no arguments.

Example –

CLS

DATA

DATA <data>, <data>, …

· Keyword

· <data> may be an variable, literal or expression of any data type.

 DATA allows literal data to be stored in a program. The data is later retrieved using the appropriate READ function. Data types may be mixed. Data elements must be separated by commas. The DATA statements must appear in the program before the READ function. The data elements may be expressions.

DATA (continued)

Example –

10 DEFINT A

20 DEFINT B

30 DEFSTR Name$

40 DATA 10, 100, “Name 1”, 20, 200 + 50, “Name 2”

.

.

.

200 A = READ()

210 B = READ()

220 Name$ = READ$()

DELETE

DELETE <line #>

DELETE - <line #>

DELETE <line #> -

DELETE <line #> - <line #>

· Command

· <line #> must be an integer literal.

· Immediate mode only.

 DELETE is used to delete a program line or a range of program lines. DELETE is available only in immediate mode. DELETE will not prompt the user for confirmation before deleting the program line(s).

Example –

DELETE 100

DELETE 200 – 500

DEFINT

DEFINT <variable name>

· Command

· <variable name> must be a unique variable name.

 DEFINT is used to declare integer variables. Only one variable can be declared per DEFINT statement. A given variable or array name can only be declared once per program execution or once in immediate mode. Variable names may be up to 16 characters long.

Example –

50 DEFINT X

DEFREAL

DEFREAL <variable name>

· Command

· <variable name> must be a unique variable name.

 DEFINT is used to declare real number (floating point) variables. Only one variable can be declared per DEFREAL statement. A given variable or array name can only be declared once per program execution or once in immediate mode. Variable names may be up to 16 characters long.

Example –

50 DEFREAL TotalCost

DEFSTR

DEFSTR <variable name>

· Command

· <variable name> must be a unique variable name.

 DEFSTR is used to declare string variables. Only one variable can be declared per DEFSTR statement. A given variable or array name can only be declared once per program execution or once in immediate mode. Variable names may be up to 16 characters long. ‘$’ may be used with string variable names as with traditional BASIC but is not required.

Example –

50 DEFSTR Name

60 DEFSTR Path$

DIMINT

DIMINT <array name>(<X>)

DIMINT <array name>(<X>, <Y>)

· Command

· <array name> must be a unique array name.

· <X> and <Y> are integer literals or expressions.

 DIMINT is used to declare an array of integers. Only one or two dimensions may be declared. As with variables, a given variable or array name can only be declared once per program execution or once in immediate mode. Array names may be up to 16 characters long. Maximum array dimension size is 255. The dimensions must be integers and may be expressions.

Example –

DIMINT X(100)

DIMINT Y(3, 100)

DIMINT VALUES(3, (4 * x) + 1)

DIMREAL

DIMREAL <array name>(<X>)

DIMREAL <array name>(<X>, <Y>)

· Command

· <array name> must be a unique array name.

· <X> and <Y> are integer literals or expressions.

 DIMREAL is used to declare an array of real numbers. Only one or two dimensions may be declared. As with variables, a given variable or array name can only be declared once per program execution or once in immediate mode. Array names may be up to 16 characters long. Maximum array dimension size is 255. The dimensions must be integers and may be expressions.

Example –

DIMREAL X(100)

DIMREAL Y(3, 100)

DIMREAL VALUES(3, (4 * x) + 1)

DIMSTR

DIMSTR <array name>(<X>)

DIMSTR <array name>(<X>, <Y>)

· Command

· <array name> must be a unique array name.

· <X> and <Y> are integer literals or expressions.

 DIMSTR is used to declare an array of strings. Only one or two dimensions may be declared. As with variables, a given variable or array name can only be declared once per program execution or once in immediate mode. Array names may be up to 16 characters long. Maximum array dimension size is 255. The dimensions must be integers and may be expressions. ‘$’ may be used with string array names as with traditional BASIC but is not required.

Example –

DIMSTR X$(100)

DIMSTR Y(3, 100)

DIMSTR Names(3, (4 * x) + 1)

EDIT

EDIT <line #>

· Command

· <line #> must be an integer literal.

· Immediate mode only.

 EDIT allows a single program line to be edited. After the edit command is given, the line number appears and the user is allowed to enter a new program line. Line number must be an integer literal and not an expression. EDIT is only available in immediate mode.

Example –

OK>EDIT 40

40 _

ELSE

· Keyword

 ELSE is used with an IF-THEN statement to define a course of action if the expression evaluated by IF is false. The statement after ELSE may contain one command (such as PRINT, GOTO, etc…) or a variable assignment. Another IF statement cannot follow an ELSE as a course of action.

Example –

100 IF X = 0 THEN GOTO 200 ELSE GOTO 300

500 IF Name = “Joe” THEN Found = 1 ELSE Found = 0

END

· Command

 END terminates program execution at the line number it is encountered. END is the equivalent to STOP. END is available only in program runtime.

Example –

1000 END

EXIT

· Command

 EXIT closes the New Basic Interpreter application. EXIT is equivalent to SYSTEM. Available only in immediate mode.

Example –

EXIT

FOR

FOR <variable> = <start> TO <end>

FOR <variable> = <start> TO <end> STEP <step>

· Command

· <variable> must be an integer variable name.

· <start> is an integer expression.

· <end> is an integer expression.

· <step> is an integer expression.

 Declares a FOR-NEXT statement. This is a program loop that will execute a defined number of times. The code in a FOR-NEXT loop will always execute once regardless of the values of the control variables. Default step is one. Integers may be expressions. FOR-NEXT statements may be nested.

Example –

100 FOR A = 1 TO X * 2 STEP 2

.

.

.

200 NEXT

GETLASTERROR

<int> GETLASTERROR()

· Function returning an integer.

Returns the last error code from the Win32 sub-system. This function should be used to check for error conditions after using file system and registry commands and functions.

Example –

PRINT GETLASTERROR()

GOTO

GOTO <line #>

· Command

· <line #> is an integer expression.
 GOTO causes program execution to jump to the line number specified in <line #>. The line number must be an integer and may be an expression.

Example –

160 GOTO 20

GOSUB

GOSUB <line #>

· Command

· <line #> is an integer expression.

 GOSUB causes program execution to jump to the line number specified in <line #>. Program execution will return to the line after the GOSUB statement when the RETURN command is executed. The line number must be an integer and may be an expression.

Example –

160 GOSUB 300 + INDEX

IF

IF <comparison> THEN <code>

IF <comparison> THEN <code> ELSE <code>

· Command

· <comparision> is a comparison expression that may be composed of other expressions.
· <code> is a command or assignment statement to be executed upon condition being true or false.
 IF evaluates a comparison expression. If the expression evaluates to be true, the code after THEN is executed. Otherwise, the code after ELSE is executed if ELSE is used.

· The comparison expression may be composed of expressions being compared using a comparison operator.

· Comparison expressions may be combined using AND and OR keywords.

· Parenthesis may not be used to set order of precedence of evaluation between AND and OR keywords. Example –

Legal :

IF (X + 1) > Y AND Z = 0 THEN…

Illegal :

IF ((X + 1) > Y AND Z = 0) OR T = 10 THEN…

· The code after the THEN and ELSE may contain assignment expressions and commands. Another IF statement may not follow a THEN or ELSE. Also, a FOR-NEXT loop may not follow a THEN or ELSE as well.

Example –

100 IF X = 0 THEN GOTO 200 ELSE GOTO 300

100 IF X + 1 > 10 OR Y = 0 OR (Z + 3) * 2 > 10 THEN PRINT “Result : “, Z

LIST

LIST

LIST <line #>

LIST - <line #>

LIST <line #> -

LIST <line #> - <line #>

· Command

· <line #> is an integer literal.

· Immediate mode only.

 LIST is used to list program lines. A line or range of lines may be specified in <line #>. The line numbers must be integer literals and not expressions.

Example –

LIST 200 –

LOAD

LOAD <file name>

· Command

· <file name> must be a string literal.

· Immediate mode only.

 LOAD reads a New Basic program from a text file into program memory. The file name must be a string literal specified in <file name>.

· The file must have the extension “NBS”. If the file name does not include an extension, “NBS” is assumed.

· Full pathnames may be used.

· The file should have been saved by the New Basic interpreter, but this is not necessary.

Example –

LOAD “testport”

LOAD “testport.nbs”

MSGBOX

MSGBOX <message>

· Command

· <message> is a string expression.

 MSGBOX displays a message Window with a single OK button. The message displayed is specified in <message>.

Example –

50 MSGBOX “File not found.”

70 MSGBOX “Error : “ + Message

NEW

· Command

· Immediate mode only.

 NEW erases the program memory and associated variables and data. The user is not prompted for confirmation.

Example –

NEW

NEXT

· Keyword

 Used in conjunction with FOR. Marks the end of the FOR-NEXT loop. NEXT terminates the loop of the most recently executed FOR.

Example –

100 FOR A = 1 TO X * 2

110 FOR B = 10 TO 1 STEP -1

.

.

.

200 NEXT

210 NEXT

OR

· Keyword

 OR is a logical operator that can only be used within IF-THEN statements. Two or more equality (or comparison) expressions can be logically “ORed” within and IF-THEN statement.

Example –

IF x = 6 OR x + 1 = y OR z = 10 THEN GOTO 100

ON

ON <ordinal> GOTO <line #>, <line #>,…

ON <ordinal> GOSUB <line #>, <line #>,…

· Command

· <ordinal> is an integer expression.

· <line #> is an integer expression.

 ON is used to GOTO or GOSUB to a line number specified in a list of line number numbers separated by commas. The line number is selected by <ordinal> following the ON keyword. The value of <ordinal> is used as the ordinal position of the line number in the list.

Example –

35 ON N GOTO 100, 200, 300

100 ON INDEX + 2 GOSUB 100, 100 + A, 100 + B

PRINT

PRINT <expression>, <expression>,…

· Command

· <expression> may be an expression of any data type (except comparision).

 PRINT displays the expressions specified in the interpreter window. The expressions may be of any data type and must be separated by commas or spaces.

Example -

PRINT “Result : “, X + 10

PRINT A, “ “, B, “ “, C$

PRINT@

PRINT@ <row>, <expression>, <expression>,…

· Command

· <row> may be a positive integer expression with a value of 0 to 25.

· <expression> may be an expression of any data type (except comparision).

 PRINT@ displays the expressions specified in the interpreter window, at the row specified. Any existing text on the screen is over-written. The expressions may be of any data type and must be separated by commas or spaces.

Example -

PRINT@ 10, “Result : “, X + 10

PRINT@ ROW, A, “ “, B, “ “, C$

READ

READINT

<int> READ()

<int> READINT()

· Function returning integer.

READ and READINT return an integer that was read from data defined in a DATA statement. If the next data element to be read is not an integer a typed mismatch error will occur.

Example –

X = READ()

X = READINT()

READREAL

<real> READREAL()

· Function returning real number.

READREAL return a real number that was read from data defined in a DATA statement. If the next data element to be read is not a real number a typed mismatch error will occur.

Example –

Z = READREAL()

READ$

READSTR

<string> READ$()

<string> READSTR()

· Function returning string.

READ$ and READSTR return a string that was read from data defined in a DATA statement. If the next data element to be read is not a string a typed mismatch error will occur.

Example –

S = READ$()

S = READSTR()

REM

REM <text>

· Keyword
Remark statement. Any text following the REM statement is ignored by the interpreter. REM must be on it’s own program line. The single quote is not a synonym for REM.

Example –

100 REM Start counting loop here.

RUN

· Command

· Immediate mode only.

Starts execution of the resident program.

Example –

RUN

RETURN

· Command

 Used to return from a GOSUB call. Program execution resumes at the line following the GOSUB statement.

Example –

100 GOSUB 300

.

.

.

300 PRINT “The count is : “, X

310 X = X + 1

320 RETURN

SYSTEM

· Command

· Immediate mode only.

 SYSTEM closes the New Basic Interpreter application. SYSTEM is equivalent to EXIT.

Example –

SYSTEM

SAVE

SAVE <file name>

· Command

· <file name> is a string literal.

· Immediate mode only.

 SAVE stores a New Basic program from memory to a text file. The file name must be a string literal.

· The file must have the extension “NBS”. If the file name does not include an extension, “NBS” is assumed.

· Full pathnames may be used.

Example –

SAVE “testport”

SAVE “testport.nbs”

SHELL

SHELL <command line>

· Command

· <command line> is a string expression.

 SHELL starts another Windows application or batch file. The full command line (including executable and parameters) is specified in <command line>. BASIC program execution continues without waiting for the shell process to terminate. Batch files do not close the console window when finished.

Example –

SHELL “Application.exe /s /t”

STOP

· Command

 STOP terminates program execution at the line number it is encountered. STOP is the equivalent to END. STOP is available only in program runtime.

Example –

1000 STOP

THEN

· Keyword

Used in conjunction with IF.

Example –

30 IF X = 5 THEN PRINT “X is 5”

TO

· Keyword

 Used in conjunction with FOR-NEXT.

Example –

100 FOR A = 0 TO 9

TROFF

· Command

 Turns the program tracer off.

Example –

TROFF

TRON

· Command

 Turns the program tracer on. The tracer stays on until the TROFF command is issued. The program tracer is a debugging tool. During program execution the line number currently being executed is displayed inside of brackets. The output of the program tracer would appear like this example –

[10][20][30][100][20][30][200]

Example –

TRON

WAIT

WAIT <seconds>

· Command

· <seconds> is an integer expression.

WAIT causes program execution to pause for the number of seconds specified in <seconds>. When in this wait state, the BASIC program cannot be terminated. However, the interpreter application can be terminated.

Example –

WAIT 5

YESNOBOX

<int> YESNOBOX(<message>)

· Function returning integer.

· <message> is a string expression.

YESNOBOX displays a Window with a message specified in <message> with YES and NO buttons. The function returns 1 if the user presses the YES button and 0 if the user presses the NO button.

Example –

Result = YESNOBOX(“Do you want to start processing now ?”)

Math Functions –

ABS

<int> ABS(<value>)

· Function returning integer.

· <value> is an integer expression.

ABS returns the absolute value of an integer expression.

Example –

X = ABS(X)

ATN

<real> ATN(<value>)

· Function returning a real number.

· <value> is an real number expression.

ATN returns the arctangent of a real number expression.

Example –

F = ATN(X + (Y – 1))

COS

<real> COS(<value>)

· Function returning a real number.

· <value> is an real number expression.

COS returns the cosine of a real number expression.

Example –

C = COS((Angle * 2 – 30) / 90)

FIX

<real> FIX(<value>)

· Function returning a real number.

· <value> is an real number expression.

FIX returns the integer component of a real number. All digits to the right of the decimal point are truncated.

Example –

T = FIX(T)

LOG

<real> LOG(<value>)

· Function returning a real number.

· <value> is an real number expression.

LOG returns the 10 base logarithm of a real number expression.

Example –

L = LOG(X)

LNX

<real> LNX(<value>)

· Function returning a real number.

· <value> is an real number expression.

LNX returns the natural logarithm of a real number expression.

Example –

L = LNX(X)

RND

<int> RND(<value>)

· Function a positive integer.

· <value> is an integer expression from 0 to 16383.

RND returns a pseudo-random number from 0 to <value>. The random number generator is seeded when the nBasic BASIC interpreter is started and not when the BASIC program is started.

Example –

RNDNUM = RND(255)

SIN

<real> SIN(<value>)

· Function returning a real number.

· <value> is a real number expression.

SIN returns the sin of a real number expression.

Example –

S = SIN(A1 / A2)

SQR

<real> SQR(<value>)

· Function returning a real number.

· <value> is an real number expression.

SQR returns the square root of a real number expression.

Example –

ROOT = SQR(IN)

TAN

<real> TAN(<value>)

· Function returning a real number.

· <value> is an real number expression.

TAN returns the tangent of a real number expression.

Example –

T = TAN(A / B)

Conversion Functions –

ASC

<int> ASC(<value>)

· Function returning integer.

· <value> is a string expression.

ASC returns the ASCII code of the first character in <value>.

Example –

N = ASC(“A”)

CHR

CHR$

<string> CHR(<value>)

<string> CHR$(<value>)

· Function returning string.

· <value> is an integer expression.

CHR and CHR$ return a single character string represented by the ASCII code passed in <value>.

Example –

C = CHR$(44)

CHAR = CHR(N – 1)

FLT

<real> FLT(<value>)

· Function returning a real number.

· <value> is an integer expression.

FLT converts an integer expression to a real number.

Example -

D = FLT(X)

HEX

<string> HEX(<value>)

· Function returning string.

· <value> is an integer expression.

HEX returns a character representation of <value> in hexadecimal format.

Example –

S = HEX(T)

INT

<int> INT(<value>)

· Function returning integer.

· <value> is a real number expression.

INT converts a real number expression to an integer value.

Example –

N = INT(COS(Y))

STR

STR$

<string> STR(<value>)

<string> STR$(<value>)

· Function returning string.

· <value> is an integer expression.

STR and STR$ return the string representation of <value>.

Example –

StringForm = STR(X)

StringForm = STR$(X)

VAL

<int> VAL(<value>)

· Function returning integer.

· <value> is a string expression.

VAL returns the integer value of a number in the string <value>.

Example –

Value = VAL(NUM$)

String Handling Functions –

INSTR

<int> INSTR(<start>, <value>, <token>)

· Function returning integer.

· <start> is an integer expression.

· <value> is a string expression.

· <token> is a string expression.

 INSTR searches for the occurrence of the string <token> in the string <value>. <start> is the postion (from left) in the string where the search starts. The minimum value for starting point is 1, which is the beginning of the string <value>. The return value is the position in <value> where <token> is found. Zero is returned if <token> is not found in <value>.

Example –

10 Name = “New Basic”

20 Position = INSTR(1, Name, “Basic”)

Position is 5.

LEN

<int> LEN(<value>)

· Function returning integer.

· <value> is a string expression.

LEN returns the length of the string passed as an argument.

Example –

Length = LEN(PathName)

LEFT

LEFT$

<string> LEFT(<value>, <position>)

<string> LEFT$(<value>, <position>)

· Function returning string.

· <value> is a string expression.

· <position> is an integer expression.

LEFT and LEFT$ return a string containing characters from <value> that are left of the position specified in <position>.

Example –

S$ = LEFT(“ABCDEFG“, 3)

S$ = LEFT$(“ABCDEFG“, 3)

S$ contains “ABC”.

MID

MID$

<string> MID(<value>,<start>,<count>)

<string> MID$(<value>,<start>,<count>)

· Function returning string.

· <value> is a string expression.

· <start> is an integer expression.

· <count> is an integer expression.

MID and MID$ return a string which is extracted from the string <value>. The resulting string starts at the position specified in <start> continues for the number of characters specified in <count>.

Example –

Name$ = MID(“ABCDEFG”, 2, 3)

Name$ = MID$(“ABCDEFG”, 2, 3)

Name$ contains “BCD”

RIGHT

RIGHT$

<string> RIGHT(<value>, <position>)

<string> RIGHT$(<value>, <position>)

· Function returning string.

· <value> is a string expression.

· <position> is an integer expression.

RIGHT and RIGHT$ return a string containing characters from <value> that are right of the position specified in <position>.

Example –

S$ = RIGHT(“ABCDEFG“, 3)

S$ = RIGHT$(“ABCDEFG“, 3)

S$ contains “EFG”.

SPACE

SPACE$

<string> SPACE(<count>)

<string> SPACE$(<count>)

· Function returning string.

· <count> is an integer expression.

SPACE and SPACE$ return a string composed of spaces. The string length is specified in <count>.

Example –

S = SPACE(20)

S = SPACE$(X * 10)

STRING

STRING$

<string> STRING(<count>, <code>)

<string> STRING$(<count>, <code>)

· Function returning string.

· <count> is an integer expression.

· <code> is an integer expression from 0 to 255.

STRING (continued)

STRING and STRING$ return a string composed of characters specified by the ASCII character code specified in <code>. The length of the string is specified in <count>.

Example –

B = STRING(32, 10)

B = STR$(40, A)

Console I/O Functions –

INPUT

INPUTINT

<int> INPUT(<prompt>)

<int> INPUTINT(<prompt>)

· Function returning integer.

· <prompt> is a string expression.

INPUT and INPUTINT receive keyboard input from the user. The user’s entry will be converted to an integer and returned. No errors will be raised if the user’s input is not an integer. The string <prompt> is displayed on the screen before the cursor.

Example –

X = INPUT(“Enter an integer : “)

X = INPUTINT(“Enter an whole number : “)

INPUTREAL

<real> INPUTREAL(<prompt>)

· Function returning a real number.

· <prompt> is a string expression.

INPUTREAL receive keyboard input from the user. The user’s entry will be converted to a real number and returned. No errors will be raised if the user’s input is not a real number. The string <prompt> is displayed on the screen before the cursor.

Example –

X = INPUTREAL(“Enter a real number : “)

INPUT$

INPUTSTR

<string> INPUT$(<prompt>)

<string> INPUTSTR(<prompt>)

· Function returning string.

· <prompt> is a string expression.

INPUT$ and INPUTSTR receive keyboard input from the user. The user’s entry will be returned.

The string <prompt> is displayed on the screen before the cursor.

Example –

Name$ = INPUT$(“Enter your name : “)

S = INPUTSTR(“Enter a sentence : “)

Environment Commands and Functions –

GETENVIRON

<string> GETENVIRON(<var name>)

· Function returning string.

· <var name> is a string expression.

Returns a value of an environment variable specified in the string <var name>.

Example –

VALUE = GETENVIRON(DataPathName)

SETENVIRON

SETENVIRON <var name>, <value>

· Command

· <var name> is a string expression.

· <value> is a string expression.

 Sets the value of an environment variable specified in <var name>. If the variable doesn’t exist it is created. The values must always be string.

Example –

SETENVIRON “MaximumRate”, “200”

File System Commands and Functions –

 The file system commands and functions identify open files by “channel”. This is a handle used to identify the file stream and serves the same purpose as “#1” in “OPEN “A:\TEMP” FOR INPUT AS #1” in traditional BASIC. There are 10 channels available and all may be open simutaneously.

CHANGEDIR

CHANGEDIR <dir name>

· Command

· <dir name> is a string expression.

Changes current working directory to the directory specified in <dir name>.

Example –

CHANGEDIR NextDir$

COPYFILE

COPYFILE <file name>, <copy name>

· Command

· <file name> is a string expression.

· <copy name> is a string expression.

Makes a copy a file. <file name> is copied to <copy name>. Both file names may be full path names.

Example –

COPYFILE FileName, “TEMP.TXT”

DELDIR

DELDIR <dir name>

· Command

· <dir name> is a string expression.

Deletes a directory specified in <dir name>. This does not prompt for user confirmation.

Example –

DELDIR “C:\TEMPDIR”

DELFILE

DELDIR <file name>

· Command

· <file name> is a string expression.

Deletes the file specified in <file name>. This does not prompt for user confirmation.

Example –

DELFILE FileName$

DELTREE

DELTREE <dir name>

· Command

· <dir name> is a string expression.

Deletes a directory specified in <dir name> and all of it’s contents, including sub-directories. This does not prompt for user confirmation.

Example –

DELTREE “C:\TEMP\TEST”

FILECREATE

FILECREATE <channel>, <file name>

· Command

· <channel> is an integer expression from 1 to 10.

· <file name> is a string expression.

Creates a file by the name specified in <file name>. The file is opened and assigned to <channel>. Fails if the file already exists.

Example –

FILECREATE 3, “C:\TEMP\TEMPDATA”

FILECLOSE

FILECLOSE <channel>

· Command

· <channel> is an integer expression from 1 to 10.

Closes an open file assigned to <channel>.

Example –

FILECLOSE 3

FILEEXISTS

<int> FILEEXISTS(<file name>)

· Function returning integer.

· <file name> is a string expression.

Returns 1 if the file specified in <file name> exists. Returns 0 if the file does not exist.

Example –

IF(FILEEXISTS(“C:\TEMP\LOCK”)) THEN GOTO 1200

FILEOPEN

FILEOPEN <channel>, <file name>

· Command

· <channel> is an integer expression from 1 to 10.

· <file name> is a string expression.

Opens an existing file. The open file is assigned to <channel>. Fails if the file doesn’t exist.

Example –

FILEOPEN 5, “PRG.INI”

FILEREAD

<string> FILEREAD(<channel>, <bytes>)

· Function returning string.

· <channel> is an integer expression from 1 to 10.

· <bytes> is an integer expression.

Reads data from an open file specified in <channel>. <bytes> specifies the number of bytes to read (maximum is 255). If the length of the string returned is zero, the end of the file has been reached.

Example –

A$ = FILEREAD(1, 255)

FILEREADLN

<string> FILEREADLN(<channel>)

· Function returning string.

· <channel> is an integer expression.

Reads a line from an open file specified in <channel>. Data is read until a return / line feed is read or 255 characters is read. If the length of the string returned is zero, the end of the file has been reached.

Example –

A$ = FILEREADLN(1)

FILEWRITE

FILEWRITE <channel>, <data>

· Command

· <channel> is an integer expression from 1 to 10.

· <data> is a string expression.

Writes data out to an open file specified by <channel>.

Example –

FILEWRITE 1, “Header”

FILEWRITELN

FILEWRITELN <channel>, <data>

· Command

· <channel> is an integer expression from 1 to 10.

· <data> is a string expression.

Writes data out to an open file specified by <channel>. A return / line feed pair is appended to the end of the data.

Example –

FILEWRITE 1, Text$

GETFREESPACE

<int> GETFREESPACE(<disk>)

· Function returning integer.

· <disk> is a string expression.

Returns the number of available kilobytes on the specified media drive. The string <disk> must be the root path of a drive letter.

Example –

PRINT “Free space is : “, GETFREESPACE(“C:\”)

GETMEDIATYPE

<int> GETMEDIATYPE(<disk>)

Returns the media type of the specified drive letter. The string <disk> must be the root path of a drive letter. Return values may be :

0 – Unknown.

1 – No root directory.

2 – Removable media (floppy drive).

3 – Fixed media (hard drive).

4 – Remote.

5 – CD ROM.

6 – RAM Disk.

Example –

N = GETMEDIATYPE(“C:\”)

MAKEDIR

MAKEDIR <dir name>

· Command

· <dir name> is a string expression.

Creates a directory specified in <dir name>. The directory is created in the current directory.

Example –

MAKEDIR NewDir$

MOVEFILE

MOVEFILE <from file>, <to file>

· Command

· <from file> is a string expression.

· <to file> is a string expression.

Moves a file from the pathname <from file> to the path name <to file>. The file is removed from the original path. Directories in the path <to file> must exist.

Example –

MOVEFILE PathName$, “C:\TEMP\” + FileName$

RENFILE

RENFILE <old file>, <new file>

· Command

· <old file> is a string expression.

· <new file> is a string expression.

Renames a file from <old file> to <new file>.

Example –

RENFILE “Text.TXT”, “Text.INI”

Registry System Commands and Functions –

 The registry system commands and functions identify open registry keys by “channel”. This is a handle used to identify the open key. This is similar to the file stream channel used by the file system commands and functions. There are 10 channels available and all may be open simutaneously. “parent” refers to an open registry key under which another registry key is opened or registry value accessed.

 It is recommended that the user be knowledgable of the Windows registry before using the registry system commands and functions. The operating system and applications can be rendered inoperative if certain registry values and keys are modified or deleted.

REGCLSKEY

REGCLSKEY <channel>

· Command

· <channel> is an integer expression from 1 to 10.

Closes an open registry key specified by <channel>.

Example –

REGCLSKEY 2

REGCREKEY

REGCREKEY <parent>, <channel>, <key name>

· Command

· <parent> is an integer expression from 1 to 10.

· <channel> is an integer expression from 1 to 10.

· <key name> is a string expression.

Creates a registry key under an already open registry key specified by <parent>. The created key is open and assigned to <channel>.

Example –

REGCREKEY 1, 2, “AppSettings”

REGDELKEY

REGDELKEY <parent>, <key name>

· Command

· <parent> is an integer expression from 1 to 10.

· <key name> is a string expression.

Deletes a registry key under an open registry key specified by <parent>. The registry key being deleted must be empty.

Example –

REGDELKEY 3, “AppSettings”

REGDELTREE

REGDELTREE <parent>, <key name>

· Command

· <parent> is an integer expression from 1 to 10.

· <key name> is a string expression.

Deletes a registry key and all subkeys under an open registry key specified by <parent>.

Example –

REGDELTREE 1, “TestApplication”

REGDELVAL

REGDELVAL <parent>, <value name>

· Command

· <parent> is an integer expression from 1 to 10.

· <key name> is a string expression.

Deletes a registry value <value name> under an open registry key specified by <parent>.

Example –

REGDELTREE 1, “TestApplication”

REGGETINT

<int> REGGETINT <parent>, <value name>

· Function returning integer.

· <parent> is an integer expression from 1 to 10.

· <key name> is a string expression.

Retrieves an integer (REG_DWORD) value from the registry. The registry value is specified by <value name> and must be under the open key specified by <parent>.

Example –

Count = REGGETINT(1, “Executions”)

REGGETSTR

<string> REGGETSTR <parent>, <value name>

· Function returning string.

· <parent> is an integer expression from 1 to 10.

· <key name> is a string expression.

Retrieves an string (REG_SZ) value from the registry. The registry value is specified by <value name> and must be under the open key specified by <parent>.

Example –

CfgFileName$ = REGGETSTR(1, “CfgFile”)

REGKEYEXIST

<int> REGKEYEXIST <parent>, <key name>

· Function returning string.

· <parent> is an integer expression from 1 to 10.

· <key name> is a string expression.

Returns 1 if the key name specified in <key name> exists under the open key specified by <parent>. Returns 0 if the key does not exist.

Example –

IF(REGKEYEXIST(1, KeyName$) = 1) THEN

REGOPENKEY

REGOPENKEY <channel>, <key name>

REGOPENKEY <parent>, <channel>, <key name>

· Command

· <parent> is an integer expression from 1 to 10.

· <channel> is an integer expression from 1 to 10.

· <key name> is a string expression.

Opens one of the pre-defined registry keys or opens a registry key under an open registry key specified by <parent>. The key being opened is assigned to <channel>.

To open a pre-defined registry key, use the two argument form. In this case, key name may be one of the following :

"HKEY_CLASSES_ROOT"

"HKEY_CURRENT_USER"

"HKEY_CURRENT_CONFIG"

"HKEY_DYN_DATA"

"HKEY_LOCAL_MACHINE"

"HKEY_PERFORMANCE_DATA"

"HKEY_USERS"

Example –

REGOPENKEY 1, “HKEY_LOCAL_MACHINE”

REGOPENKEY 1, 2, “AppSettings”

REGSETINT

REGSETINT <parent>, <value name>, <value>

· Command

· <parent> is an integer expression from 1 to 10.

· <value name> is a string expression.

· <value> is an integer expression.

Sets an integer (REG_DWORD) value in the registry. <parent> specifies an open registry key. The integer <value> is assigned to the registry value <value name>. If the value does not exist it is created.

Example –

REGSETINT 2, “Executions”, Count

REGSETSTR

REGSETINT <parent>, <value name>, <value>

· Command

· <parent> is an integer expression from 1 to 10.

· <value name> is a string expression.

· <value> is a string expression.

Sets a string (REG_SZ) value in the registry. <parent> specifies an open registry key. The integer <value> is assigned to the registry value <value name>. If the value does not exist it is created.

Example –

REGSETINT 2, “CfgFileName”, CfgFile$

REGVALEXIST

<int> REGVALEXIST <parent>, <value name>

· Function returning integer.

· <parent> is an integer expression from 1 to 10.

· <value name> is a string expression.

Returns 1 if the value <value name> exists under the open key specified by <parent>. Returns 0 if the value does not exist.

Example –

IF(REGVALEXIST(2, “Count”) = 1) THEN

Program Samples

REGDEMO.NBS

This program installs and removes a registry key and two values. If the registry key does not exist, the user is prompted to install the key. If the key does exist, the user is prompted to remove the key. The key being installed here is “DemoKey” and is installed under HKEY_CURRENT_USER.

10 REM --

15 REM Registry setup demonstration.

20 REM Registry values are installed and removed to demonstrate

30 REM registry functionality.

35 REM --

40 REM

50 REM Setup variables.

55 REM

60 DEFSTR DemoKey

65 DEFSTR ValueName1

70 DEFSTR ValueName2

71 DEFSTR InstallPrompt

72 DEFSTR UninstallPrompt

75 DemoKey = "DemoKey"

80 ValueName1 = "Value 1"

85 ValueName2 = "Value 2"

86 InstallPrompt = "Would you like to install the demo registry ?"

87 UninstallPrompt = "Would you like to remove the demo registry ?"

90 REM

95 REM If the demo key is not installed, install it, otherwise remove.

100 REM

110 RegOpenKey 1, "HKEY_CURRENT_USER"

111 IF GetLastError() > 0 THEN GOTO 400

115 IF RegKeyExist(1, DemoKey) = 1 THEN GOTO 150

120 IF YesNoBox(InstallPrompt) = 1 THEN GOSUB 200

130 GOTO 180

150 IF YesNoBox(UninstallPrompt) = 1 THEN GOSUB 300

170 REM

173 REM Close up registry key and terminate.

175 REM

180 RegClsKey 1

190 STOP

195 REM

197 REM Create the demo key and values.

199 REM

200 RegCreKey 1, 2, DemoKey

210 IF GetLastError() > 0 THEN GOTO 400

220 RegSetStr 2, ValueName1, "Value of Value 1"

225 IF GetLastError() > 0 THEN GOTO 400

230 RegSetStr 2, ValueName2, "Value of Value 2"

235 IF GetLastError() > 0 THEN GOTO 400

240 RegClsKey 2

245 MsgBox "Demo key created."

250 RETURN

295 REM

297 REM Remove the demo key and values.

299 REM

300 RegDelTree 1, DemoKey

REGDEMO.NBS (continued)

310 IF GetLastError() > 0 THEN GOTO 400

315 MsgBox "Demo key removed."

320 RETURN

395 REM

397 REM Report errors and terminate.

399 REM

400 PRINT "Error Occurred : ", GetLastError()

410 RegClsKey 1

425 RegClsKey 2

XMLDEMO.NBS

This program produces an XML file from data loaded from a text. The file XMLDEMO.TXT is required to run this program.

10 REM --

15 REM XML file demonstration.

20 REM Data is loaded from a text file (XMLDEMO.TXT)and written out to

30 REM an XML file.

35 REM --

40 REM

50 REM Data declarations.

55 REM

60 DATA "<?xml version='1.0' encoding = 'UTF-16'?>"

65 DATA "<Employees>", "</Employees>"

70 REM

75 REM Variable declarations.

80 REM

85 DEFSTR Name$

87 DEFSTR InFile$

88 DEFSTR OutFile$

90 DEFSTR StartNameTag$

95 DEFSTR EndNameTag$

97 InFile$ = "XMLDEMO.TXT"

98 OutFile$ = "XMLDEMO.XML"

100 StartNameTag$ = " <Name>"

105 EndNameTag$ = "</Name>"

110 REM

115 REM Open the souce file (XMLDEMO.TXT).

117 REM

120 FileOpen 1, InFile$

125 IF GetLastError() > 0 THEN GOTO 500

127 REM

128 REM Open the target XML file. If it exists, delete it first.

129 REM

130 IF FileExists(OutFile$) = 1 THEN DelFile(OutFile$)

135 IF GetLastError() > 0 THEN GOTO 500

140 FileCreate 2, OutFile$

145 IF GetLastError() > 0 THEN GOTO 500

150 REM

152 REM Write out the beginning of the XML file...

155 REM

160 FileWriteLn 2, Read$()

165 FileWriteLn 2, Read$()

170 IF GetLastError() > 0 THEN GOTO 500

175 REM

177 REM Now read in the names from the text file and write out XML.

XMLDEMO.NBS (continued)

178 REM If Name$ is zero length, the end of the file is reached.

179 REM

180 Name$ = FileReadLn(1)

190 IF Len(Name$) = 0 THEN GOTO 315

200 FileWriteLn 2, StartNameTag$ + Name$ + EndNameTag$

210 GOTO 180

300 REM

305 REM Write out the end of the XML file.

310 REM

315 FileWriteLn 2, Read$()

320 IF GetLastError() > 0 THEN GOTO 500

350 FileClose 1

360 FileClose 2

365 PRINT "Finished transforming file."

370 END

400 REM

405 REM Report any errors that may occur.

410 REM

500 PRINT "Error Occurred : ", GetLastError()

510 FileClose 1

520 FileClose 2

Error codes returned by function GetLastError that are most likely to be seen while using this BASIC interpreter.

(Taken from WinError.h)

0
The operation completed successfully.

1
Incorrect function.

2
The system cannot find the file specified.

3
The system cannot find the path specified.

4
The system cannot open the file because too many files are already open.

5
Access is denied.

6
The handle is invalid.

7
The storage control blocks were destroyed.

8
Out of available memory (RAM).

9
The storage control block address is invalid.

10
The environment is incorrect.

11
An attempt was made to load a program with an incorrect executable format.

12
The access code is invalid.

13
Invalid data.

14
Not enough memory (RAM) is available to complete this operation.

15
Invalide drive specification.

16
The directory cannot be removed.

17
The system cannot move the file to a different disk drive.

18
No more files.

19
The media is write protected.

20
The system cannot find the device specified.

21
The device is not ready.

22
The device does not recognize the command.

23
Data error (cyclic redundancy check).

24 The program issued a command of incorrect length.

25
The drive cannot locate a specific area or track on the disk.

26
The specified disk or diskette format is incorrect.

27
The drive cannot find the sector requested.

28
The printer is out of paper.

29
The system cannot write to the specified device.

30
The system cannot read from the specified device.

31
A device attached to the system is not functioning.

32
The process cannot access the file because it is being used by another process.

33
The process cannot access the file because another process has locked the file.

34
The wrong diskette is in the drive.

35
Too many files opened for sharing.

38
Reached the end of the file.

39
The disk is full.

50
The network request is not supported.

51
The remote computer is not available.

52
A duplicate name exists on the network.

53
The network path was not found.

54
The network is busy.

55
The specified network resource or device is not available.

56
The network BIOS command limit has been reached.

57
A network adapter hardware error occurred.

58
The specified server cannot perform the requested operation.

59
An unexpected network error occurred.

60
The remote adapter is not compatible.

61
The printer queue is full.

62
Space to store the file waiting to be printed is not available on the server.

63
Print job was cancelled.

64
The specified network name is not available.

65
Network access is denied.

66
The network resource type is not correct.

67
The network name cannot be found.

68
The name limit for the local computer network adapter card was exceeded.

69
The network BIOS session limit was exceeded.

70
The remote server has been paused or is in the process of being started.

71 No more connections can be made to this remote computer at this time.

72
The specified printer or disk device has been paused.

80
The file exists.

82
The directory or file cannot be created.

83
Fail on interupt 24.

84
Storage to process this request is not available.

85
The local device name is already in use.

86
The specified network password is not correct.

87
Invalid parameter.

88
A write fault occurred on the network.

89
The system cannot start another process at this time.

90
Cannot create another system semaphore.

91
The exclusive semaphore is owned by another process.

102
The semaphore is set and cannot be closed.

103
The semaphore cannot be set again.

104
Cannot request exclusive semaphores at interrupt time.

105
The previous ownership of this semaphore has ended.

106
Insert the diskette for drive.

107
The program stopped because an alternate diskette was not inserted.

108
The disk is in use or locked by another process.

109
The named pipe connection has been terminated.

110
The system cannot open the device or file specified.

111
The file name is too long.

112
There is not enough space on the disk.

113
No more internal file identifiers available.

114
The target internal file identifier is incorrect.

117
The IOCTL call made by the application program is not correct.

118
The verify-on-write switch parameter value is not correct.

119
The system does not support the command requested.

120
This function is not supported on this system.

121
The semaphore timeout period has expired.

122
The data area passed to a system call is too small.

123
The filename, directory name, or volume label syntax is incorrect.

124
The system call level is not correct.

125
The disk has no volume label.

126
The specified module could not be found.

127
The specified procedure could not be found.

128
There are no child processes to wait for.

129
The application cannot be run in Win32 mode.

130
Attempt to use a file handle to an open disk partition for non-raw disk I/O.

131
An attempt was made to move the file pointer before the beginning of the file.

132
The file pointer cannot be set on the specified device or file.

133
A JOIN or SUBST command cannot be used as a drive that contains joined drives.

134
An attempt was made to use a JOIN or SUBST command on a drive that has

already been joined.

135
An attempt was made to use a JOIN or SUBST command on a drive that has already been substituted.

136
The system tried to delete the JOIN of a drive that is not joined.

137
The system tried to delete the substitution of a drive that is not substituted.

138
The system tried to join a drive to a directory on a joined drive.

139
The system tried to substitute a drive to a directory on a substituted drive.

140
he system tried to join a drive to a directory on a substituted drive.

141
The system tried to SUBST a drive to a directory on a joined drive.

142
The system cannot perform a JOIN or SUBST at this time.

143
The system cannot join or substitute a drive to or for a directory on the same drive.

144
The directory is not a subdirectory of the root directory.

145
The directory is not empty.

146
The path specified is being used in a substitute.

147 Not enough resources are available to process this command.

148
The path specified cannot be used at this time.

149
An attempt was made to join or substitute a drive for which a directory on the drive is the target of a previous
substitute.

150
System trace information was not specified in CONFIG.SYS file, or tracing is disallowed.

151
The number of specified semaphore events for DosMuxSemWait is not correct.

152
DosMuxSemWait did not execute; too many semaphores are already set.

153
The DosMuxSemWait list is not correct.

154
The volume label you entered exceeds the label character limit of the target file system.

155
Cannot create another thread.

156
The recipient process has refused the signal.

157
The segment is already discarded and cannot be locked.

158
The segment is already unlocked.

159
The address for the thread ID is not correct.

160
The argument string passed to DosExecPgm is not correct.

161
The specified path is invalid.

162
A signal is already pending.

164
No more threads can be created in the system.

167
Unable to lock a region of a file.

170
The requested resource is in use.

173
A lock request was not outstanding for the supplied cancel region.

174
The file system does not support atomic changes to the lock type.

180
The system detected a segment number that was not correct.

181
The operating system cannot run the program.

183
Cannot create a file when that file already exists.

186
The flag passed is not correct.

187
The specified system semaphore name was not found.

188
The operating system cannot run the program.

189 The operating system cannot run the program.

190
The operating system cannot run the program.

191
Cannot run the program in Win32 mode.

192
The operating system cannot run the program.

193
The propgram is not a valid Win32 application.

194
The operating system cannot run the program.

195
The operating system cannot run the program.

196
The operating system cannot run the program.

197
The operating system is not presently configured to run this application.

198
The operating system cannot run the program.

199
The operating system cannot run the program.

200
The code segment cannot be greater than or equal to 64K.

201
The operating system cannot run the program.

202
The operating system cannot run the program.

203
The system could not find the environment option that was entered.

205
No process in the command subtree has a signal handler.

206
The filename or extension is too long.

207
The ring 2 stack is in use.

208
The global filename characters, * or ?, are entered incorrectly or too many global filename characters are
specified.

209
The signal being posted is not correct.

210
The signal handler cannot be set.

212
The segment is locked and cannot be reallocated.

214
Too many dynamic-link modules are attached to this program or dynamic-link module.

215
Can't nest calls to LoadModule.

216
The image program is valid, but is for a machine type other than the current machine.

230
The pipe state is invalid.

231
All pipe instances are busy.

232
The pipe is being closed.

233
No process is on the other end of the pipe.

234
More data is available.

240
The session was canceled.

254
The specified extended attribute name was invalid.

255
The extended attributes are inconsistent.

259
No more data is available.

266
The copy functions cannot be used.

267
The directory name is invalid.

275
The extended attributes did not fit in the buffer.

276
The extended attribute file on the mounted file system is corrupt.

277
The extended attribute table file is full.

278
The specified extended attribute handle is invalid.

282
The mounted file system does not support extended attributes.

